Unbalanced SVM

source  http://hi.baidu.com/%D1%EE%C1%D6%B1%AA/blog/item/666c81b287b7a1afd9335abf.html

松弛变量引入以后的优化问题:

SVM入门(九)松弛变量(续)

注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就 这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用不同的C,这时就意味着你对每个样本的重视程度都 不一样,有些样本丢了也就丢了,错了也就错了,这些就给一个比较小的C;而有些样本很重要,决不能分类错误(比如中央下达的文件啥的,笑),就给一个很大 的C。

当然实际使用的时候并没有这么极端,但一种很常用的变形可以用来解决分类问题中样本的“偏斜”问题。

先来说说样本的偏斜问题,也叫数据集偏斜(unbalanced),它指的是参与分类的两个类别(也可以指多个类别)样本数量差异很大。比如说正类有10,000个样本,而负类只给了100个,这会引起的问题显而易见,可以看看下面的图:

SVM入门(九)松弛变量(续)

方形的点是负类。H,H1,H2是根据给的样本算出来的分类面,由于负类的样本很少很少,所以有一些本来是负类的样本点没有提供,比如图中两个灰色的方形点,如果这两个点有提供的话,那算出来的分类面应该是H’,H2’和H1,他们显然和之前的结果有出入,实际上负类给的样本点越多,就越容易出现在灰色点附近的点,我们算出的结果也就越接近于真实的分类面。但现在由于偏斜的现象存在,使得数量多的正类可以把分类面向负类的方向“推”,因而影响了结果的准确性。

对付数据集偏斜问题的方法之一就是在惩罚因子上作文章,想必大家也猜到了,那就是给样本数量少的负类更大的惩罚因子,表示我们重视这部分样本(本来数量就少,再抛弃一些,那人家负类还活不活了),因此我们的目标函数中因松弛变量而损失的部分就变成了:

SVM入门(九)松弛变量(续)

其中i=1…p都是正样本,j=p+1…p+q都是负样本。libSVM这个算法包在解决偏斜问题的时候用的就是这种方法。

那C+和C怎么确定呢?它们的大小是试出来的(参数调优),但是他们的比例可以有些方法来确定。咱们先假定说C+是5这么大,那确定C的一个很直观的方法就是使用两类样本数的比来算,对应到刚才举的例子,C就可以定为500这么大(因为10,000:100=100:1嘛)。

但是这样并不够好,回看刚才的图,你会发现正类之所以可以“欺负”负类,其实并不是因为负类样本少,真实的原因是负类的样本分布的不够广(没扩充到负类 本应该有的区域)。说一个具体点的例子,现在想给政治类和体育类的文章做分类,政治类文章很多,而体育类只提供了几篇关于篮球的文章,这时分类会明显偏向 于政治类,如果要给体育类文章增加样本,但增加的样本仍然全都是关于篮球的(也就是说,没有足球,排球,赛车,游泳等等),那结果会怎样呢?虽然体育类文 章在数量上可以达到与政治类一样多,但过于集中了,结果仍会偏向于政治类!所以给C+和C确定比例更好的 方法应该是衡量他们分布的程度。比如可以算算他们在空间中占据了多大的体积,例如给负类找一个超球——就是高维空间里的球啦——它可以包含所有负类的样 本,再给正类找一个,比比两个球的半径,就可以大致确定分布的情况。显然半径大的分布就比较广,就给小一点的惩罚因子。

但是这样还不够好,因为有的类别样本确实很集中,这不是提供的样本数量多少的问题,这是类别本身的特征(就是某些话题涉及的面很窄,例如计算机类的文章就明显不如文化类的文章那么“天马行空”),这个时候即便超球的半径差异很大,也不应该赋予两个类别不同的惩罚因子。

看到这里读者一定疯了,因为说来说去,这岂不成了一个解决不了的问题?然而事实如此,完全的方法是没有的,根据需要,选择实现简单又合用的就好(例如libSVM就直接使用样本数量的比)。

other resource http://www.shrekwang.com/bbs/article/457002/SVM%E5%88%86%E7%B1%BB%E5%99%A8%E7%9A%84%E6%83%A9%E7%BD%9A%E5%9B%A0%E5%AD%90

http://www.ilovematlab.cn/forum.php?mod=viewthread&tid=104698

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

生活在西班牙

自己动手丰衣足食

BlueAsteroid

Just another WordPress.com site

Jing's Blog

Just another WordPress.com site

Start from here......

我的心情魔方

天才遠私廚

希望能做一個分享各種資訊的好地方

语义噪声

西瓜大丸子汤的博客

笑对人生,傲立寰宇

Just another WordPress.com site

Where On Earth Is Waldo?

A Project By Melanie Coles

the Serious Computer Vision Blog

A blog about computer vision and serious stuff

Cauthy's Blog

paper review...

Cornell Computer Vision Seminar Blog

Blog for CS 7670 - Special Topics in Computer Vision

datarazzi

Life through nerd-colored glasses

Luciana Haill

Brainwaves Augmenting Consciousness

槑烎

1,2,∞

Dr Paul Tennent

and the university of nottingham

turn off the lights, please

A bunch of random, thinned and stateless thoughts around the Web

%d bloggers like this: